The staff of HR would like to welcome Marshall Chasin, AuD, as a regular columnist on our pages. Not that he wasn't before; Dr Chasin has written for this magazine since the early 1990s and is greatly valued for both his articles and his guidance as part of the HR Editorial Advisory Board. In his new "Back to Basics" column, he will explore a broad body of literature and knowledge related to acoustics, hearing aid fittings, hearing conservation, music, and much more.

-Karl Strom, HR Editor-in-chief

Did We Throw Out the Baby with the Bathwater? The Limitations and Benefits of Flared Tubing

BY MARSHALL CHASIN, AuD

he science of flared or belled tubing is something many of us were more aware of in the 1980s than we are today. In the 1980s, with the limitations of the Class A amplifier stages commonly used in the hearing aid industry, whenever possible, it was always better to amplify the higher frequencies acoustically than electronically. This was directly related to the high distortion with Class A amplifiers with more intense (and high frequency) signals.

While this is no longer a concern with the ubiquitous use of the cleaner sounding Class D output stage that now has been in use for about a quarter of a century, there were some other benefits of a flared or belled tubing; we may have thrown the baby out with the bathwater. And, with the advent of slim-tube hearing aids (with the receiver in the hearing aid), the Libby horn which flared from an inner diameter (ID)

AuD, is an audiologist Hearing Loss in Musicians, The CIC Handbook, and Noise Control—A Primer, and

Marshall Chasin,

of 2 mm to 3 or 4 mm, is no longer widely used as well.

However let's return to the scientific basis of the Libby horn or any flared length of tubing. There are two equations governing their acoustic behavior, and these are the same two equations we can use in speech acoustics, musical acoustics, or the design of loud speaker systems.

- 1) F = v/2L, where v is the speed of sound (340,000 mm/sec)
- 2) Amplification factor = $20 \log (inner)$ diameter [ID] of wider portion/ID of narrower portion)

The first equation (F=v/2L) tells us at which frequency a flare/horn will begin to have its effect, and the second equation (amplification factor) tells us the maximum amount of improvement (increase) in transmission in dB.

effect will gradually increase with frequency.

For shorter-eared individuals, such as small

children (a shorter L), the effect may not be

we can obtain. In the case of the 4 mm Libby

horn that flared from ID of 2 mm to 4 mm,

we have 20 log 2, which is 6 dB. That is, for a

doubling from 2 mm ID to 4 mm ID, we can obtain up to 6 dB of "free amplification."

any doubling and this includes from 1 mm ID

Notice that we can obtain this benefit for

Equation #2 tells us how much of a benefit

seen until closer to 3000 Hz.

Equation #1 says that the increase in gain and output will not be realized until the higher frequency region. Specifically, for a 75 mm length of tubing-still found in modern behind the ear hearing aids-a flare will begin to have its effect at 2266 Hz (or F = 340,000 mm/sec /[2 x 75 mm]), and the acoustic amplification

gain and sufficient output (for that gain) almost free of charge and may also allow them to continue on with their current amplification.

Using flared tubing allows

our clients to have sufficient

to 2 mm ID tubing. This is the same formula that speech scientists use to determine how much we can increase our vocal intensity when we open our mouths wider, or musical instrument designers use to determine how large the trumpet flare should be.

Some of the benefits that can still be recognized with a flared tubing (even for slim tube fittings) is an additional 6 dB of increase for both the gain and the output for sounds above about 2200 Hz. Using an acoustic flare will improve battery life since the amplification occurs after the hearing aid circuitry.

Another benefit is that *both* the hearing aid gain and the hearing aid output will be increased by the flare. This is a much more desirable situation than if we simply turned up the high frequency gain using software. It may be that our clients require more high frequency gain and output than their hearing aid

can provide. Using flared tubing allows our clients to have sufficient gain and sufficient output (for that gain) almost free of charge and may also allow them to continue on with their current amplification.

This can be accomplished by trimming off the

last 20-22 mm of the slim tube and gluing on a piece of #13 tubing (which has an ID of about 2 mm). I typically use a receiver-in-the-ear tip which fits snuggly over the piece of #13 tubing.

This sounds "low tech," and indeed it is-but there is still a place for basic acoustic science in our modern day hearing aid fittings!

CORRESPONDENCE can be addressed to Dr Chasin at: marshall.chasin@rogers.com